MATH 103B - Discussion Worksheet 4 May 4, 2023

Topics: Irreducible polynomials (Judson 17.3); field of fractions (Judson 18.1)
Problem 1. Determine whether the following polynomials are irreducible in the specified ring.

1. $x^{2}+x+1$ in $R[x]$
2. $x^{2}+x+1$ in $\mathbb{F}_{3}[x]$
3. $x^{3}-x+1$ in $\mathbb{F}_{5}[x]$
4. $2 x^{3}+5 x-3$ in $\mathbb{Q}[x]$
5. $2 x^{3}-3$ in $\mathbb{Q}[x]$
6. $3 x^{4}-25 x^{3}+100 x^{2}-75 x+5$ in $\mathbb{Q}[x]$

Problem 2. Prove or disprove: If $f(x)$ is irreducible in $\mathbb{Z}[x]$, then $\overline{f(x)}$ is irreducible in $\mathbb{F}_{p}[x]$ for every prime number p.

Problem 3. Prove or disprove: If $f(x)$ is reducible in $\mathbb{Z}[x]$, then $\overline{f(x)}$ is reducible in $\mathbb{F}_{p}[x]$ for every prime number p.

Problem 4. Determine the field of fraction of

$$
\mathbb{Z}_{(p)}=\left\{\frac{a}{b}: a, b \in \mathbb{Z}, p \nmid b\right\}
$$

and prove your result.
Problem 5. Prove that a field of characteristic p must contain \mathbb{F}_{p}.
Remark 0.1. On your homework, you will prove that a field of characteristic 0 must contain \mathbb{Q}.

Problem 6. (Bonus) Recall the ring of formal power series over the real numbers $\mathbb{R} \llbracket x \rrbracket$ introduced in class. Show that $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \in \mathbb{R} \llbracket x \rrbracket$ is a unit if and only if $a_{0} \neq 0$. What is the field of fractions of $\mathbb{R} \llbracket x \rrbracket$?
Remark 0.2. Using a similar argument, one can show that a power series with coefficients from any ring R is a unit if and only if its constant term is a unit in R.

